



# BRIDGING HYDROLOGICAL AND SOCIAL ANALYSIS



**Deltares** 



**Deltares** 











#### **Human Responses**

- Agent Based Model
- Filled with information derived from literature to be validated with stakeholders from the system
- Decision rules are formulated
  i.e. when water availability is lower than x and there are no other options to adapt,
  migration occurs
- Data on changes in the water system and adaptive capacity
- Insights in water related migration mechanism



#### **Hydrologic models**

- Wflow hydrological model / rainfall runoff model
- RIBASIM water resources model
- Data
  - Supply
    - Quantity, quality, costs of options
  - Demand
    - Population growth, irrigation, hydro power, environmental awareness





### **Causal Loop Diagram**



- **Group Model Building** with stakeholders
- Shared understanding
- Qualitative
- **Quantify key factors**
- Visualize in dashboard







#### **WPS Approach – Integrated Approach – Systems thinking**





"When we are blind to systemic causes of problems, all the solutions we try will likely make matters worse".



## **Bridging hydrologic and social analysis**





#### How to understand to decide?



